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Motivation

« Existing text revision system:

» Provides writing suggestions based on user
instfruction, focusing on:

> Single-sentence revision.

> Unconstrained revision.
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Motivation

 However, in real-world application:
» Users expect a text revision system that:
» Revises text at the paragraph level.
» Adheres 1o specific constraints (e.q.,
sentence structure, word limits, length

restrictions).

> We name this task Constrained Text Revision
(CTR).
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Motivation

« Furthermore, CTR has diverse applications.
> Plain text revision, LaTeX document revision.

» Therefore, designing a universal CIR system for
all use cases is challenging.

« AIm to design a text revision agent:

« Develop an intelligent agent capable of
performing paragraph-level text revision by
following various constrained instructions. The
agent should be adaptable to diverse use
cases with ease.
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Observations

« LLM’s CIR ability (both text quality and constraint
adherence) benefits from:

> Structured planning

» LLMs benefit more from human’s revision plan

PPL., SOME{ BART.{ L1 L2 L3 L4
w/o Plan 34.58 88.91 -2.46 w/o Plan 68.00 61.00 53.66 46.50
w/ GPT-40 Plan 23.64 01.67 -1.92 w/ GPT-4o Plan __ 71.00  67.00 _ 61.00  54.00

-1.49 Gain +3.00 +6.00 +7.34 +7.50

w/ Human Plan  21.31 93.28

Table 1: Revised text quality under three conditions: Table 2: Constraint adherence accuracy (%) under dif-

without plans (w/o Plan), with GPT-40-generated plans ferent constraints for two settings: without plans (w/o
(w/ GPT-40 Plan), and with human-labeled plans (w/  Plan) and with GPT-40-generated plans (w/ GPT-40
Human Plan). SOME is reported in %, and BART.  Plan). Gain: the performance gain with the plan.
represents the BARTScore.
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Observations

« LLM’s CIR ability (both text quality and constraint
adherence) benefits from iterative revisions.
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Figure 3: Left: Average PPL, SOME, and BARTScore
for revised text across five revision rounds (R1-R5).
Right: Average accuracy for different revision rounds.
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Method

« Design TRIPS, a constraint Text Revision agent via
Iterative Planning and Searching for CITR:
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Method

« TRIPS operate iteratively in two phases:
» Planning:

» Utilizes a planner to formulate tool usage
and revision strategies tailored to different
scenarios.

» Searching:
» Employs selected tools to guide the search

algorithm in identifying optimal revision
plans for the reviser (i.e., a vanilla LLM).
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Method

 Planner

» Requires understanding the constraints to
formulate:
» Tool usage
» Text revision plans

» However, constrained revisions often involve
numerical symbols (Jiang et al., 2024), which
LLMs frequently misinterpret (Chen et al., 2024).

* Yuxin Jiang, Yufei Wang, Xingshan Zeng, Wanjun Zhong, Liangyou Li, Fei Mi, Lifeng Shang, Xin Jiang, Qun Liu, and Wei Wang.
2024. FollowBench: A multi-level fine-grained constraints following benchmark for large language models. In ACL 2024.

* Yihan Chen, Benfeng Xu, Quan Wang, Yi Liu, and Zhendong Mao. Benchmarking large language models on controllable
generation under diversified instructions. In AAAI 2024.
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Method - Planner

« Build the planner in two steps:

» Generate Synthetic Tragjectories with GPT-40
through in-context learning (ICL)

» Use the trgjectory to fine-tune LLMs through:
» Supervised Fine-Tuning (SFT)

> |terative self-training alignment
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Method - Planner

« Synthetic Trgjectory Generation Biamer 7T T
|
Input Instruction & Paragraph
> Leveroge GPT-40 1o Thought(.ngctiou Preferred
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text revision planning oSample
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revision plans as in-
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Method - Planner

« Synthetic Trajectory Generation rg===-=-=========-------- T

: Planner

 ReAct format -

Input Instruction & Paragraph

° Thought & Action Preferred
> Observaf’on: |n pUT TeXT Observation
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> Thought: |dentify ? Thought & action |
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Method - Planner
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Method - Planner

» Use synthetfic trajectory to build rp====-=-=======-------- T
an initial planner via SFT.

Input Instruction & Paragraph
Thought & Action Preferred

Observation

c) Sample
Thought & Action :
Non-preferred

Trajectory Data
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¢
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Method - Planner

I Planner

Input Instruction & Paragraph
Thought & Action Preferred

« Create new ftrajectory H; with
the initial planner by generating:
steps up to i. |

« Sample mulfiple thought and |

action pairs based on H;. i

Observation
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Thought & Action :
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@ d) Preference
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fed <
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Method - Planner
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Method - Planner

« Action (a;44) scoring function:
Sa(@it1) = Av - Sv + Ar - Sr + Ac - S,
« S,:Tool usage quality, S,: Revision quality; S.:
Constraint adherence quality.
« A, A, and A,: respective weight.
* Preference Optimization:
« Highest scoring action with its thought form the
winning response w;, ;.
« Use Lp, containing both SIMPO (Meng et al., 2024)
and cross entropy computed on the winning
response to optimize the planner:

Lp = Lsimpo — logmn(wit1|H:)

Blog mn(wit1|Hi)  Blogmn(liva|Hs) _7)_
| w1 Lt

— :_logo.(
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Method - Search

* Propose a Tool-Guided Monte Carlo Tree Search (TG-
MCTS): A novel approach that seamlessly infegrates @
planner, reviser, and adaptable tools, enabling efficient
adaptation to diverse CIR scenarios.
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Method - Search
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Method - Search

« TG-MCTS:
» Each j-th node in the free is defined as:

s; =105, H;, N(s;), V(s;)}

> o0;: Observation af ]-th node, containing the
revised text y; and feedback.

> H;: Historical trajectory to the current node.

> N(s;): Node's visit count.

> V(s;): Node's value score, corresponds fo the
expected reward of s;.

© Copyright National University of Singapore. All Rights Reserved.



Method - Search

« TG-MCIS iteratively performs: a) Selection; b) Tool-
Guided Expansion; c) Tool-Based Evaluation; d)
Backpropagation

> Selection: TG-MCITS selects a node based on the
Upper Confidence Bounds applied to Trees (UTC)
score:

UCT(s;) = V(s;) + a\/ lrjlvﬁi?;), (3)

p: parent node of s;, a hyper-parameter, balancing
between exploitation (V(s;)) and exploration (N(s;))

© Copyright National University of Singapore. All Rights Reserved.



Method - Search

» Tool-Guided Expansion:
> Revise:
» Expand the selected node by generate a set of
actions a;j.
» Generate new revision y;,; based on the revision
plan with the reviser (mg): yj41 = me(aj41, ;)
> Feedback:
» Use the selected tools to provide feedback for
Yi+1, containing:
» Revision feedback - suggestions for improving
the revision.
» Constraint feedback - suggestions for
Improving the constraint adherence.

© Copyright National University of Singapore. All Rights Reserved. 23



Method - Search

» Tool-Based Evaluation:
» Compute the expected reward R(sj;,) for the new

node s;;, using the selected tools, R(s;j4+1) = Ry + R.:
> R,;. Generated revision reward
» R.. Constraint reward

» Backpropagation:
» Updates the values and visit counts of all nodes
along the path from the root node 1o its parent
nodes si (0 < k < j)

Nnew(Sk) — Nold(sk) L (4)

Vo No R(s;
Vnew(sk): ld(Sk) ]\;:fjl(ﬁ;k—; (SJ—H)? (5)
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Dataset Construction

> We infroduce ConsTRev for constrained text revision
task, with a focus on:

» Paragraph-level revision

» Multiple-level, complex, verifiable, and valid text
revision constrainfs.

» Contains LO domain: text paired with text revision
instructions without constraints.

» Contains L1 — L4 domain: each containing text
paired constrained text revision instructions
containing one to four constraints, respectively.

© Copyright National University of Singapore. All Rights Reserved. 25



Dataset Construction

» Data Source:

> A curated selection of 500 texts from diverse
sources:

» Academic papers
> WikiHow articles
> Human-written stories

» Each text contains 350 fo 1000 words.

» Five domains (LO-L4), each containing 100 texts.

© Copyright National University of Singapore. All Rights Reserved. 26



Dataset Construction

» Constrained Instruction Creation
> Use GPT-40 to revise the selected text.

onstrained Instruction

o ——— —— — -

N
Include the keyword 1

/" Whether you love it or
hate it, Jared Leto‘s
take on the Joker has

Love it or hate it, Jared Leto’s  g) Revise
interpretation of the JOKer iS - rmm—m—

| & bt tooi ‘Joker’ and refine !
aninternet ...... \ ecom.e A et ohie the text within15 |
I \_ontheinternet ...... 3 S =
R g ——————————— = 7/
b) Extract GPT-40 d) Instruction Rendering
Features
s | S€Ntence Length: [12, ..., 5] c) Create Constraints j Keep the keyword ‘Joker’. .=,
~ KeyWords: Joker, ..., Jared Leto | l Contain less than 15 sentences. |
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Dataset Construction

» Constrained Instruction Creation

> Exitractrelevant features and structure constrained

INstfructions via program template.

/"Whether you love it or ) Constrained Instruction

| Include the keyword

1 ‘Joker’ and refine
1
1

the text within15

Love it or hate it, Jared Leto’s  g) Revise’
interpretation of the Joker is ’

aninternet......

\_on the internet ......

hate it, Jared Leto‘s
take on the Joker has
become a hot topic

_/ | | sentences.

b) Extract GPT-40 @

Features

! 2

Sentence Length: [12, ..., 5] c) Create Constraints ‘["‘Eep the ktgword ‘Joker’.

Key Words: Joker, ..., Jared Leto
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Dataset Construction

» Constrained Instruction Creation

» Combine multiple (0-4) constrained instructions into

a seft.

» Use GPT-40 to refine and improve fluency for more

natural and effective instructions.

Love it or hate it, Jared Leto’s  g) Revise ¥€e/lt Sl ) I " Include the keyword

interpretation of the Joker is
aninternet ......

b) Extract
Features

Sentence Length: [12, ..., 5]

Key Words: Joker, ..., Jared Leto

GPT-40 @

tadke on the Joker has

b
0

ther you love it or \ Constrained Instructl

1
1 ‘Joker’ and refine
ecome a hot topic 1
1

: the text within15
n the internet ......

"\ | sentences.

_____________

d) Instruction Rendering

c) Create

Constraints ( Keep the keyword ‘Joker’
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Experiment — Dataset & Model

» Dataset
> We evaluate TRIPS on ConsTRev across 5 domains
(LO- L4)

» Model:
» We develop two systems:

> TRIPS-3.1:
» Use Llama-3.1-8B-Instruct as the reviser

> TRIPS-40:
» Use GPT-40 as the reviser

» Both systems use Lliama-3.1-8B-Insfruct as the
base model for constructing the planner.

© Copyright National University of Singapore. All Rights Reserved.



Experiment — Baseline & Results

» Compare against SOTA

.. 5
text revision systems System SISO TR
(CoEDIT-C) and CTG CoEDIT-C 3882 8732 -2.16

i Direct 29.69 8361 497
(Evol-Ins & Conifer) tLama ST R,

. 1 4
» GPT-4o0/LLama3.] 3 e 2655 8421  -4.52
. , TRIPS-3.1  25.82 88.96 -1.92
baselines: Direct 35.00 8761 218
» Direct Prompting, CoT, 4, gﬁi 2252 22:?421 E
_ It 34.74 88.21 21.89
Human-Plan (qun)' Ti{IPS-40 33.07 88.80 -1.76

Iterative Revision (lter)

Table 4: Performance on the ConsTRev LO domain.
. SOME is shown in %. BART. denotes the BARTScore.
» Results: TRIPS-3.1 / 40 The best and second-best results are highlighted in bold

reaches the best text and underline, respectively.
quality among baselines.
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Experiment - Results

» TRIPS-3.1/40 achieves the best performance in
consirained instruction following.

L1 L2 L3 L4
System  Cons. Text Quality Cons. Text Quality Cons. Text Quality Cons. Text Quality

Ace.t PPL] SOME{T BART.T Acc.t PPL| SOME? BART.t Acc.t PPL] SOMET BART.t Acc.t PPL| SOME{ BART.t

Evol-Ins 57.00 32.79 86.87 -2.32 53.0 39.12 87.83 -2.23  51.33 38.29 87.79 -1.17 42.00 31.54 87.24 -1.94

Conifer 51.00 39.16 85.71 -3.42 59.0 46.04 87.79 -2.88  52.00 43.74 88.28 248 4425 41.11 88.42 -2.65
LLaMA 3.1 8B Instruct

Direct 58.00 3092 83.34 -4.46 59.5 3395 87.41 374 50.33 3420 88.31 254 4225 3138 91.13 -2.55
CoT 60.00 30.15 84.23 -5.19 57.5 3472 87.85 -4.68 51.00 32.84 88.41 -3.81 46.00 30.73 91.87 -3.81
Plan 62.00 29.56 85.14 -4.08 61.5 3021 87.85 -3.38 54.66 2933  88.01 234 46.25 2898 9141 -3.22
Iter A5 00 29273 R3 74 _3 R (345 2000 2K 77 _3 37 5733 2879 R R _3 18 AR 725 2R 37 91 16 _3 1R
TRIPS-3.1 83.00 27.49 89.00 -1.95 80.0 29.80 88.74 -1.86  80.00 28.18 89.00 -2.00 7275 27.82 88.44 -1.80
G 1-40
Direct 69.00 5191 86.41 -2.23 61.5 5337 87.56 -1.95 5433 50.61 89.00 -1.98  47.00 46.87 88.64 -1.93
CoT 68.00 50.55 86.21 -2.06 63.0 49,71 88.10 -1.93  55.66 48.83 87.89 -1.92 4875 4543  88.78 -1.92
Plan 72.00 4205 86.75 -2.01 66.5 4468 88.06 -1.91  60.00 42.89 88.07 -1.98 53,75 4341 88.61 -1.92
Tier 77 00 A0 TR RA QS _2 4] (7 S A3 R4 QR 27 _1 072 A7 33 47 IR R7 12 _103 S4 75 A4 A4 RR 73 _] R4

TRIPS-40 3252 87.11 -1.82 39.11 88.84 -1.87  82.66 3445  88.63 -1.87 32.87 88.82 -1.72

Table 3: Performance on ConsTRev across L1-L4 domains. Cons. denotes constraint adherence quality, Acc.
denotes accuracy, and BART. denotes the BARTScore. Both Acc. and SOME are shown in %. The best results are

bolded, and the second-best results are underlined across all domains.
B
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Analysis

» TRIPS-40 vs GPT-40(lter)(i.e., the best performing

baseline) under LLM-as-a-Judge evaluation:

» Evaluate 100 outputs fromTRIPS-40 and GPT-40(lter)

» Results indicate that TRIPS-40 consistently
outperforms GPT-40(lter)

TRIPS-40 GPT-40 # Cases
F () 4.93 4.87 F 67
C® 4.82 4.67 C 1
GH) 0.02 0.06 G 85

Table 5: LLM-as-a-Judge using GPT-4. Left: Average
scores assigned by GPT-4. Right: Number of cases (#
Cases) where TRIPS-40 outperformes GPT-4o.

© Copyright National University of Singapore. All Rights Reserved.
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Analysis

» Each components plays an important role in improving
TRIPS’ performance

Systemn L0 | | L2 L3 L4
PPL| SOME{ BART." TRIPS-40 85.00 83.00 82.66 76.50
TRIPS-40 33.07 88.80 -1.76 w/0 Plan 76.00 65.50 60.66 54.25
w/0 Plan 34.93 88.16 -1.91 w/o Feedback 79.00 69.00 62.00 56.00
w/o Feedback 34.21 88.24 -1.88 w/o R, 84.00 82.50 81.66 75.25
w/o R, 33.95 88.56 -1.82 w/o R, 81.00 73.00 6833 62.75
w/o R, 33.09 88.78 -1.74

Table 7: Constraint adherence accuracy on ConsTRev
Table 6: Revision quality on the ConsTRev LO domain. across L1 to L4 domains.
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Analysis

original meaning remains infact.

rate compared to GPT-40 (lter).

Preservation R

6 - TRIPS-40
GPT-40
€ 44
=
o TRIPS-40: 81.7%
§ GPT-40: 64.7%
2 -

—ta

ate Distribution \

/

e

Amount

Preservation Rate Distribution

» Preserving named entities during revision ensures the

» TRIPS-40 achieves a higher named entity preservation

| TRIPS-40: 91.4%

TRIPS-40
GPT-40

GPT-40:73.3%

_/'/

N

\ 00 02 04

Preservation Rate

0.6

0.8 1.'0/

0.0

04 06 08

Preservation Rate

0.2

Figure 5: The preservation rate distribution.
Named entity. Right: LaTeX keyword.
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Analysis

» TRIPS-40 can be easily extended to other use cases,
like LaTeX revision

» Producing revisions:

» Containing fewer error
> Better text quality

Preservation Rate Distribution Preservation Rate Distribution
6 TRIPS-40 /8 J TRIPS-40
GPT-40 GPT-40 v
Text Qualit
e’ AvECE.L —ppr [ SOME T BART?
g GPT-40:64.7% / £ TRiPs-40:91.4% GPT-40 024 4872 85.37 -1.92
) 2| OPT40:733% TRIPS-40 0.06 35.65 88.21 -1.61
ol- —_— — : . 0l . ) .
R ... S B \_ 000 N e O D Table 8: Revised text generated by TRIPS-40 and GPT-

40. AvgCE.: the average compilation error. Text Qual-

Figure 5: The preservation rate distribution. Left: ity: the quality of the revision after compilation.

Named entity. Right: LaTeX keyword.
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Analysis
» Our planner largely surpass GPT-40 and its base model

» Our self-fraining alignment method effectively
enhances the planner’s tool usage performance
QCross iterations.

100

100
mGPT-40 L0 —e—L1
mlLLaMA3.1
m Planner

w0
o
T

=]
(=]

F1 Score
w
o
=

[=2]

=]

~

o
T

F1 Score

@
o

-1 -2 -3 -4

Iy
o

LO L1 L2 L3 L4
Conslmprove

Self-Training Iteration

Figure 6: F; score (in %) for tool usage quality.
Left: Tools usage generated by GPT-40, Llama-3.1-
8B-Instruct, and the planner. Right: Tool usage quality

across four iterations (I-1 to I-4).
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Conclusion

» We infroduce Constrained Text Revision (CTR), a novel
task, along with ConsTRev, a dedicated dataset.

» We formulate CTR as an iterative planning and
searching problem and propose TRIPS as a solution.

» TRIPS significantly outperforms bbaseline approaches.

» TRIPS exhibits strong adaptability across diverse use
cases.

© Copyright National University of Singapore. All Rights Reserved.



Thank Youl!
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