

Constraint Text Revision Agent Via Iterative Planning and Searching

Hannan Cao and Hwee Tou Ng

National University of Singapore

Outline

- Motivation
- Observations
- Methods
- Dataset Construction
- Experimental Results
- Conclusion

Motivation

- Existing text revision system:
 - Provides writing suggestions based on user instruction, focusing on:
 - > Single-sentence revision.
 - > Unconstrained revision.

Motivation

- However, in real-world application:
 - Users expect a text revision system that:
 - > Revises text at the paragraph level.
 - Adheres to specific constraints (e.g., sentence structure, word limits, length restrictions).
 - We name this task Constrained Text Revision (CTR).

Motivation

- Furthermore, CTR has diverse applications.
 - Plain text revision, LaTeX document revision.
 - > Therefore, designing a universal CTR system for all use cases is challenging.
- Aim to design a text revision agent:
 - Develop an intelligent agent capable of performing paragraph-level text revision by following various constrained instructions. The agent should be adaptable to diverse use cases with ease.

Observations

 LLM's CTR ability (both text quality and constraint adherence) benefits from:

Structured planning

> LLMs benefit more from human's revision plan

	PPL↓	SOME ↑	BART.↑
w/o Plan	34.58	88.91	-2.46
w/ GPT-4o Plan	23.64	91.67	-1.92
w/ Human Plan	21.31	93.28	-1.49

Table 1: Revised text quality under three conditions: without plans (**w/o Plan**), with GPT-40-generated plans (**w/ GPT-40 Plan**), and with human-labeled plans (**w/ Human Plan**). SOME is reported in %, and BART. represents the BARTScore.

	L1	L2	L3	L4
w/o Plan	68.00	61.00	53.66	46.50
w/ GPT-4o Plan	71.00	67.00	61.00	54.00
Gain	+3.00	+6.00	+7.34	+7.50

Table 2: Constraint adherence accuracy (%) under different constraints for two settings: without plans (w/o Plan) and with GPT-4o-generated plans (w/ GPT-4o Plan). Gain: the performance gain with the plan.

Observations

 LLM's CTR ability (both text quality and constraint adherence) benefits from iterative revisions.

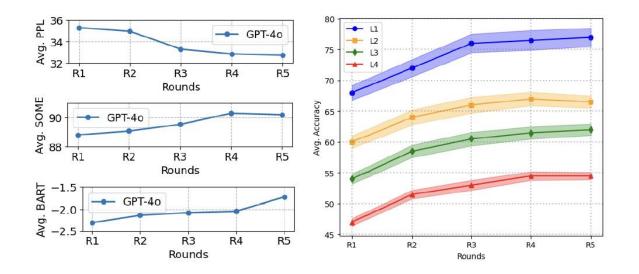
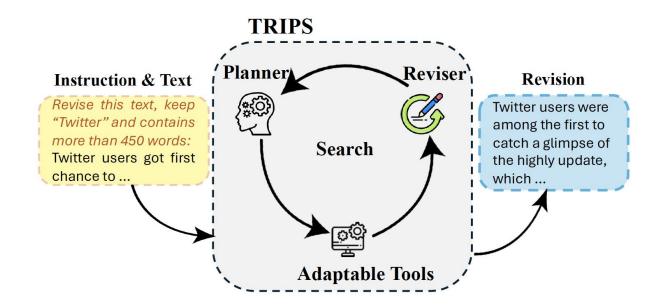


Figure 3: **Left:** Average PPL, SOME, and BARTScore for revised text across five revision rounds (R1–R5). **Right:** Average accuracy for different revision rounds.

Method

 Design TRIPS, a constraint Text Revision agent via Iterative Planning and Searching for CTR:



Method

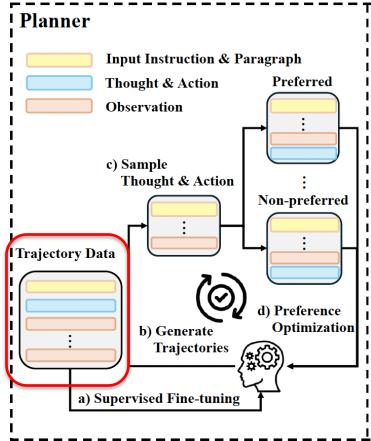
- TRIPS operate iteratively in two phases:
 - Planning:
 - Utilizes a planner to formulate tool usage and revision strategies tailored to different scenarios.
 - > Searching:
 - Employs selected tools to guide the search algorithm in identifying optimal revision plans for the reviser (i.e., a vanilla LLM).

Method

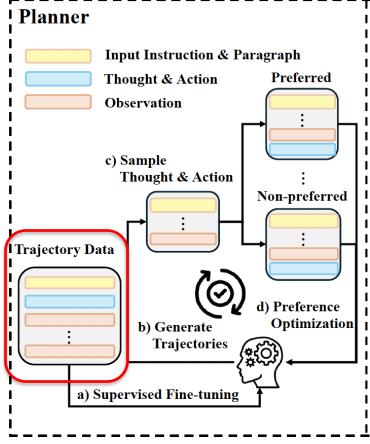
- Planner
 - Requires understanding the constraints to formulate:
 - > Tool usage
 - > Text revision plans
 - However, constrained revisions often involve numerical symbols (Jiang et al., 2024), which LLMs frequently misinterpret (Chen et al., 2024).
- Yuxin Jiang, Yufei Wang, Xingshan Zeng, Wanjun Zhong, Liangyou Li, Fei Mi, Lifeng Shang, Xin Jiang, Qun Liu, and Wei Wang. 2024. FollowBench: A multi-level fine-grained constraints following benchmark for large language models. *In ACL 2024.*
- Yihan Chen, Benfeng Xu, Quan Wang, Yi Liu, and Zhendong Mao. Benchmarking large language models on controllable generation under diversified instructions. In AAAI 2024.

- Build the planner in two steps:
 - Generate Synthetic Trajectories with GPT-40 through in-context learning (ICL)
 - Use the trajectory to fine-tune LLMs through:
 - Supervised Fine-Tuning (SFT)
 - > Iterative self-training alignment

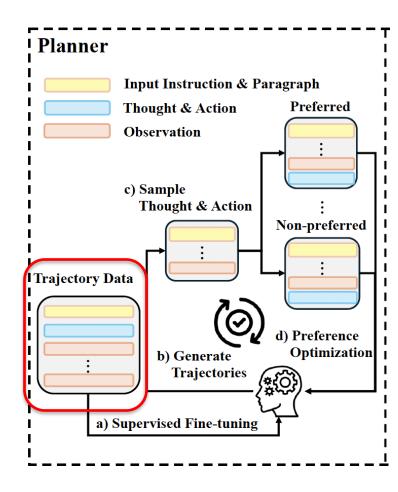
- Synthetic Trajectory Generation
 - Leverage GPT-40 to generate tool usage and text revision planning trajectories via ICL.
 - Use human-labeled revision plans as incontext examples.
 - Adapt the ReAct format.



- Synthetic Trajectory Generation
 - ReAct format
 - > **Observation**: Input text and instruction.
 - > **Thought**: Identify constraints and areas for improvement.
 - > **Action**: Form tool usage and text revision plans.
 - Revised text and feedback form the new observation.

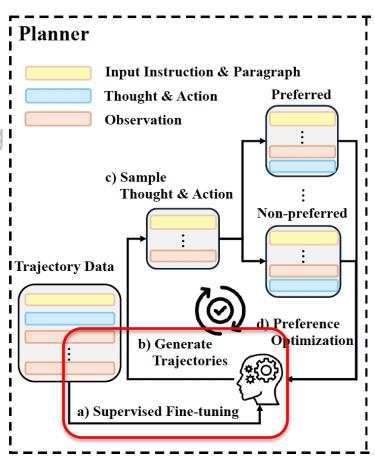


- Synthetic Trajectory
 Generation
 - Iterate the above steps until:
 - Reaching the maximum number of iterations or
 - Until further iterations no longer improve the revision quality.

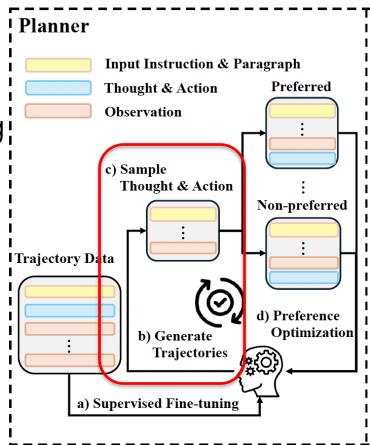


National University of Singapore

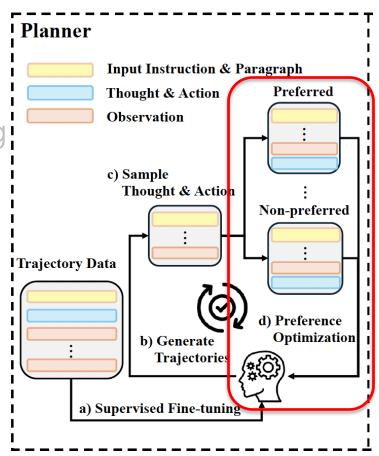
- Use synthetic trajectory to build an initial planner via SFT.
- Create new trajectory H_i with the initial planner by generating steps up to i.
- Sample multiple thought and action pairs based on H_i .
- Evaluate the action with a scoring function to create the preference data.
- Using this preference data to further optimize the planner.



- Use synthetic trajectory to build an initial planner via SFT.
- Create new trajectory H_i with the initial planner by generating steps up to i.
- Sample multiple thought and action pairs based on H_i .
- Evaluate the action with a scoring function to create the preference data.
- Using this preference data to further optimize the planner.



- Use synthetic trajectory to build an initial planner via SFT.
- Create new trajectory H_i with the initial planner by generating steps up to i.
- Sample multiple thought and action pairs based on H_i .
- Evaluate the action with a scoring function to create the preference data.
- Using this preference data to further optimize the planner.



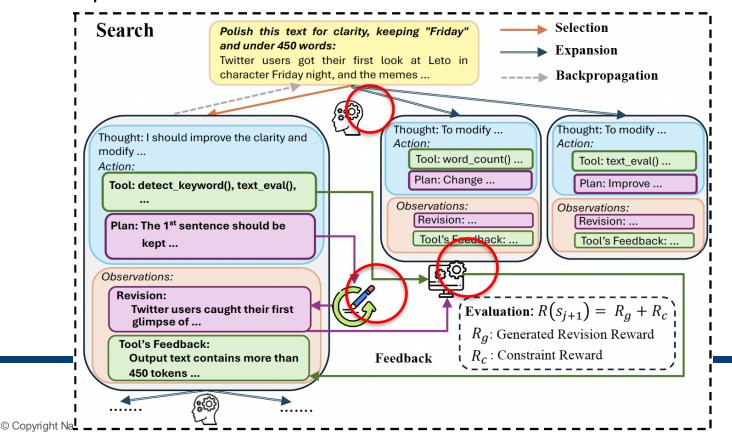
• Action (a_{i+1}) scoring function:

$$S_a(a_{i+1}) = \lambda_v \cdot S_v + \lambda_r \cdot S_r + \lambda_c \cdot S_c,$$

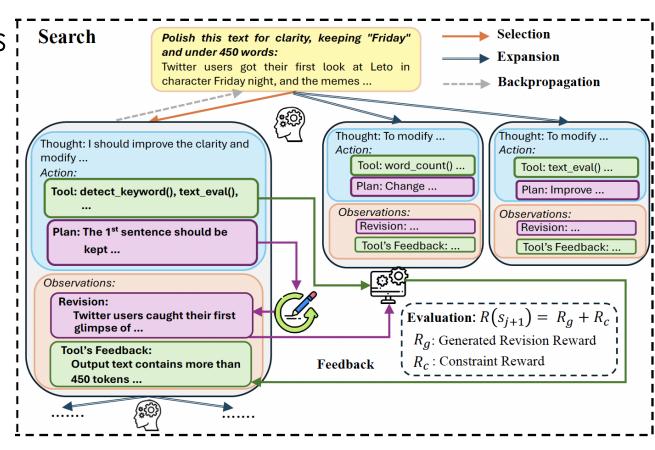
- S_v : Tool usage quality, S_r : Revision quality; S_c : Constraint adherence quality.
- λ_v , λ_r , and λ_c : respective weight.
- Preference Optimization:
 - Highest scoring action with its thought form the winning response w_{i+1} .
 - Use L_P , containing both SimPO (Meng et al., 2024) and cross entropy computed on the winning response to optimize the planner:

$$egin{align} \mathcal{L}_P &= \mathcal{L}_{SimPO} - \log \pi_n(w_{i+1}|\mathcal{H}_i) \ &= -\log \sigma \left(rac{eta \log \pi_n(w_{i+1}|\mathcal{H}_i)}{|w_{i+1}|} - rac{eta \log \pi_n(l_{i+1}|\mathcal{H}_i)}{|l_{i+1}|} - \gamma
ight) \ &= -\log \pi_n(w_{i+1}|\mathcal{H}_i), \end{split}$$

Propose a Tool-Guided Monte Carlo Tree Search (TG-MCTS): A novel approach that seamlessly integrates a planner, reviser, and adaptable tools, enabling efficient adaptation to diverse CTR scenarios.



- TG-MCTS extends traditional MCTS with two key components:
 - Tool-Guided Expansion
 - Tool-Based Evaluation



- TG-MCTS:
 - > Each j-th node in the tree is defined as:

$$s_{j} = \{o_{j}, H_{j}, N(s_{j}), V(s_{j})\}$$

- \triangleright o_j : Observation at j-th node, containing the revised text y_i and feedback.
- $\succ H_i$: Historical trajectory to the current node.
- $\triangleright N(s_i)$: Node's visit count.
- $\succ V(s_j)$: Node's value score, corresponds to the expected reward of s_j .

- TG-MCTS iteratively performs: a) Selection; b) Tool-Guided Expansion; c) Tool-Based Evaluation; d) Backpropagation
 - Selection: TG-MCTS selects a node based on the Upper Confidence Bounds applied to Trees (UTC) score:

$$UCT(s_j) = V(s_j) + \alpha \sqrt{\frac{\ln N(p)}{N(s_j)}}, \quad (3)$$

p: parent node of s_j , α hyper-parameter, balancing between exploitation $(V(s_i))$ and exploration $(N(s_i))$

- > Tool-Guided Expansion:
 - > Revise:
 - \triangleright Expand the selected node by generate a set of actions a_{j+1} .
 - From Generate new revision y_{j+1} based on the revision plan with the reviser (π_{θ}) : $y_{j+1} = \pi_{\theta}(a_{j+1}, y_j)$

> Feedback:

- > Use the selected tools to provide feedback for y_{j+1} , containing:
 - Revision feedback suggestions for improving the revision.
 - Constraint feedback suggestions for improving the constraint adherence.

National University of Singapore

Method - Search

- > Tool-Based Evaluation:
 - \triangleright Compute the expected reward $R(s_{j+1})$ for the new node s_{j+1} using the selected tools, $R(s_{j+1}) = R_g + R_c$:
 - $\triangleright R_q$: Generated revision reward
 - \triangleright R_c : Constraint reward
- > Backpropagation:
 - \blacktriangleright Updates the values and visit counts of all nodes along the path from the root node to its parent nodes s_k $(0 \le k \le j)$

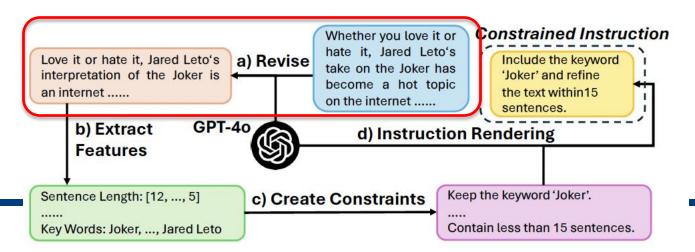
$$N_{\text{new}}(s_k) = N_{\text{old}}(s_k) + 1, \tag{4}$$

$$V_{\text{new}}(s_k) = \frac{V_{\text{old}}(s_k)N_{\text{old}}(s_k) + R(s_{j+1})}{N_{\text{new}}(s_k)}, \quad (5)$$

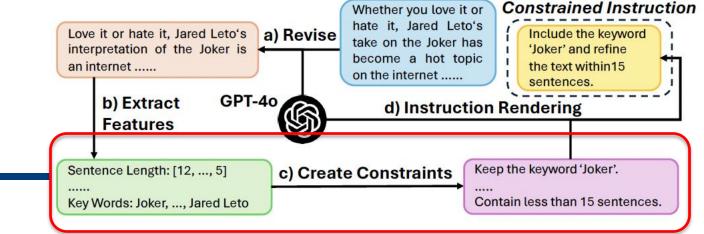
- We introduce ConsTRev for constrained text revision task, with a focus on:
 - Paragraph-level revision
 - > Multiple-level, complex, verifiable, and valid text revision constraints.
 - Contains L0 domain: text paired with text revision instructions without constraints.
 - ➤ Contains L1 L4 domain: each containing text paired constrained text revision instructions containing one to four constraints, respectively.

- > Data Source:
 - ➤ A curated selection of **500 texts** from diverse sources:
 - > Academic papers
 - WikiHow articles
 - Human-written stories
 - > Each text contains 350 to 1000 words.
 - > Five domains (L0-L4), each containing 100 texts.

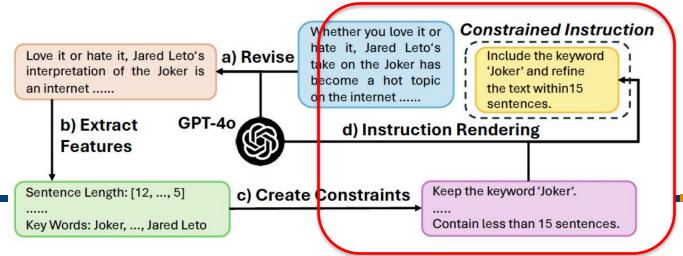
- Constrained Instruction Creation
 - Use GPT-40 to revise the selected text.
 - Extract relevant features and structure constrained instructions via program template.
 - Combine multiple (0-4) constrained instructions into a set.
 - > Use GPT-40 to refine and improve fluency for more natural and effective instructions.



- Constrained Instruction Creation
 - > Use GPT-40 to revise the selected text.
 - Extract relevant features and structure constrained instructions via program template.
 - Combine multiple (0-4) constrained instructions into a set.
 - > Use GPT-40 to refine and improve fluency for more natural and effective instructions.



- Constrained Instruction Creation
 - > Use GPT-40 to revise the selected text.
 - > Extract relevant features and structure constrained instructions via program template.
 - ➤ Combine multiple (0-4) constrained instructions into a set.
 - > Use GPT-40 to refine and improve fluency for more natural and effective instructions.



Experiment – Dataset & Model

- Dataset
 - We evaluate TRIPS on ConsTRev across 5 domains (L0- L4)
- > Model:
 - > We develop two systems:
 - > TRIPS-3.1:
 - Use Llama-3.1-8B-Instruct as the reviser
 - > TRIPS-40:
 - > Use GPT-40 as the reviser
 - ➤ Both systems use Llama-3.1-8B-Instruct as the base model for constructing the planner.

Experiment – Baseline & Results

- Compare against SOTA text revision systems (CoEDIT-C) and CTG (Evol-Ins & Conifer)
- ➤ GPT-4o/LLama3.1 baselines:
 - Direct Prompting, CoT, Human-Plan (Plan), Iterative Revision (Iter)_
- Results: TRIPS-3.1/40 reaches the best text quality among baselines.

System -		L0					
Sy	System		SOME ↑	BART.↑			
CoE	EDIT-C	38.82	87.32	-2.16			
	Direct	29.69	83.61	-4.97			
LLaMA	CoT	27.38	84.58	-4.77			
3.1	Plan	27.31	84.18	-4.58			
3.1	Iter	26.55	84.21	-4.52			
	TRIPS-3.1	25.82	88.96	-1.92			
	Direct	35.92	87.61	-2.18			
	CoT	36.16	88.62	-2.21			
GPT-40	Plan	35.24	88.14	<u>-1.87</u>			
	Iter	34.74	88.21	-1.89			
	TRIPS-40	33.07	88.80	-1.76			

Table 4: Performance on the ConsTRev L0 domain. SOME is shown in %. BART. denotes the BARTScore. The best and second-best results are highlighted in **bold** and underline, respectively.

National University of Singapore

Experiment - Results

> TRIPS-3.1/40 achieves the best performance in constrained instruction following.

			L1				L2				L3				L4	
System	Cons.		Text Qual i	ity	Cons.		Text Qual	ity	Cons.		Text Qual	ity	Cons.	,	Text Qual	ity
I	Acc.↑	PPL↓	SOME↑	BART.↑	Acc.↑	PPL↓	SOME↑	BART.↑	Acc.	PPL↓	SOME↑	BART.↑	Acc.↑	PPL↓	SOME↑	BART.↑
Evol-Ins	57.00	32.79	86.87	-2.32	53.0	39.12	87.83	-2.23	51.33	38.29	87.79	-1.17	42.00	31.54	87.24	-1.94
Conifer	51.00	39.16	85.71	-3.42	59.0	46.04	87.79	-2.88	52.00	43.74	88.28	-2.48	44.25	41.11	88.42	-2.65
							LLaMA	3.1 8B Ins	struct							
Direct	58.00	30.92	83.34	-4.46	59.5	33.95	87.41	-3.74	50.33	34.20	88.31	-2.54	42.25	31.38	91.13	-2.55
CoT	60.00	30.15	84.23	-5.19	57.5	34.72	87.85	-4.68	51.00	32.84	88.41	-3.81	46.00	30.73	91.87	-3.81
Plan	62.00	29.56	85.14	-4.08	61.5	30.21	87.85	-3.38	54.66	29.33	88.61	-2.34	46.25	28.98	91.41	-3.22
Iter	65.00	29.23	83.74	-3.82	63.5	29.96	88.22	-3.32	57.33	28.22	88.82	-3.18	48.25	28.37	91.16	-3.18
TRIPS-3.1	83.00	27.49	89.00	<u>-1.95</u>	80.0	29.80	<u>88.74</u>	-1.86	80.00	28.18	89.00	-2.00	<u>72.75</u>	27.82	88.44	<u>-1.80</u>
								GPT-40								
Direct	69.00	51.91	86.41	-2.23	61.5	53.37	87.56	-1.95	54.33	50.61	89.00	-1.98	47.00	46.87	88.64	-1.93
CoT	68.00	50.55	86.21	-2.06	63.0	49.71	88.10	-1.93	55.66	48.83	87.89	-1.92	48.75	45.43	88.78	-1.92
Plan	72.00	42.05	86.75	-2.01	66.5	44.68	88.06	-1.91	60.00	42.89	88.07	-1.98	53.75	43.41	88.61	-1.92
Iter	77.00	40 78	86 95	-2 41	67.5	43 84	88 32	-1 92	62 33	42 28	87 12	-1 93	54 75	44 64	88 73	-1 84
TRIPS-40	85.00	32.52	<u>87.11</u>	-1.82	83.0	39.11	88.84	<u>-1.87</u>	82.66	34.45	88.63	<u>-1.87</u>	76.50	32.87	88.82	-1.72

Table 3: Performance on ConsTRev across L1-L4 domains. **Cons.** denotes constraint adherence quality, **Acc.** denotes accuracy, and **BART.** denotes the BARTScore. Both Acc. and SOME are shown in %. The best results are **bolded**, and the second-best results are underlined across all domains.

- > TRIPS-40 vs GPT-40(Iter) (i.e., the best performing baseline) under LLM-as-a-Judge evaluation:
 - Evaluate 100 outputs fromTRIPS-40 and GPT-40(Iter)
 - Results indicate that TRIPS-40 consistently outperforms GPT-40(Iter)

	TRIPS-40	GPT-40		# Cases
$F(\uparrow)$	4.93	4.87	F	67
$C(\uparrow)$	4.82	4.67	C	72
$G(\downarrow)$	0.02	0.06	G	85

Table 5: LLM-as-a-Judge using GPT-4. **Left**: Average scores assigned by GPT-4. **Right**: Number of cases (# **Cases**) where TRIPS-4o outperformes GPT-4o.

Each components plays an important role in improving TRIPS' performance

System	$\mathbf{L0}$						
System	PPL↓	SOME ↑	BART.↑				
TRIPS-40	33.07	88.80	-1.76				
w/o Plan	34.93	88.16	-1.91				
w/o Feedback	34.21	88.24	-1.88				
w/o R_g	33.95	88.56	-1.82				
w/o R_c	33.09	88.78	-1.74				

	L1	L2	L3	L4
TRIPS-40	85.00	83.00	82.66	76.50
w/o Plan	76.00	65.50	60.66	54.25
w/o Feedback	79.00	69.00	62.00	56.00
w/o R_g	84.00	82.50	81.66	75.25
w/o R_c	81.00	73.00	68.33	62.75

Table 7: Constraint adherence accuracy on ConsTRev

Table 6: Revision quality on the ConsTRev L0 domain. across L1 to L4 domains.

- Preserving named entities during revision ensures the original meaning remains intact.
- > TRIPS-40 achieves a higher named entity preservation rate compared to GPT-40 (Iter).

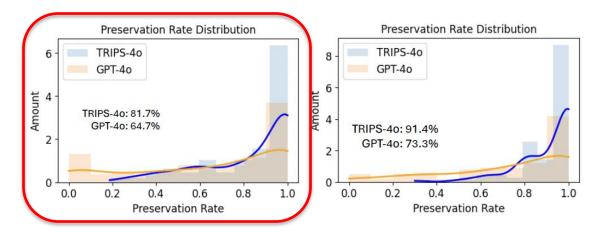


Figure 5: The preservation rate distribution. **Left:** Named entity. **Right:** LaTeX keyword.

- TRIPS-40 can be easily extended to other use cases, like LaTeX revision
 - > Producing revisions:
 - Containing fewer error
 - Better text quality

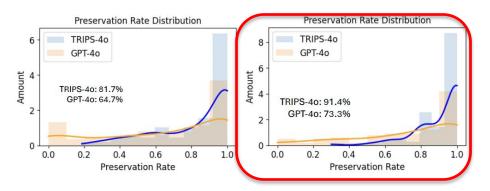


Figure 5: The preservation rate distribution. **Left:** Named entity. **Right:** LaTeX keyword.

	AvgCE.↓	Text Quality				
	AvgCL. \downarrow	PPL ↓	SOME ↑	BART ↑		
GPT-40	0.24	48.72	85.37	-1.92		
TRIPS-40	0.06	35.65	88.21	-1.61		

Table 8: Revised text generated by TRIPS-40 and GPT-40. **AvgCE.**: the average compilation error. **Text Quality**: the quality of the revision after compilation.

- Our planner largely surpass GPT-40 and its base model
- Our self-training alignment method effectively enhances the planner's tool usage performance across iterations.

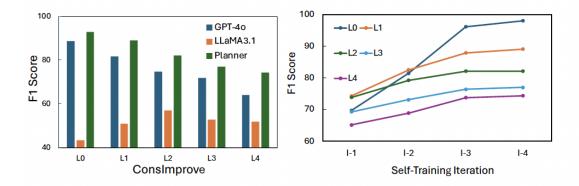


Figure 6: F₁ score (in %) for tool usage quality. **Left:** Tools usage generated by GPT-40, Llama-3.1-8B-Instruct, and the planner. **Right:** Tool usage quality across four iterations (I-1 to I-4).

Conclusion

- We introduce Constrained Text Revision (CTR), a novel task, along with ConsTRev, a dedicated dataset.
- We formulate CTR as an iterative planning and searching problem and propose TRIPS as a solution.
- > TRIPS significantly outperforms baseline approaches.
- > TRIPS exhibits strong adaptability across diverse use cases.

Thank You!